한 줄 요약: $N \geq 3$부터 합성수다. $1$부터 $N$까지의 합은 간단하게 $S(N) = \frac{N(N+1)}{2}$로 나타낼 수 있다. 합성수는 소수와 소수의 곱 혹은 소수와 합성수의 곱 혹은 합성수와 합성수의 곱이다. 1. $N$이 $1$이라면 $S(1) = 1$이므로 이는 소수도 아니고 합성수도 아니다.2. $N$이 $2$라면 $S(2) = \frac{2 \times 3}{2} = 1 \times 3$이므로 소수다.3. $N$이 $3$보다 크거나 같다면 $S(N) = \frac{N(N+1)}{2}$에서 $N$은 $3$보다 크거나 같고 $N+1$도 $4$보다 크거나 같다. 이는 둘 중에 하나가 짝수여서 $2$로 나누어떨어진다고 가정했을 때, $N = 2$와 같이 $1$이 되지 않는다. ..
한 줄 요약: $N$이 제곱수이거나 제곱수를 $2$로 나눈 값이라면 양의 약수의 합은 홀수고 아니라면 짝수다.($16(4^{2})$, $72(\frac{12^2}{2})$, $\cdots$ 등은 홀수, $19$, $34$, $\cdots$ 등은 짝수) $N$이 주어졌을 때 양의 약수의 합이 무엇이냐고 한다면, 직접 약수를 구해서 합을 더해 줄 수 있다. 그리고 그 값이 홀수인지 짝수인지 판단 해볼수 있다. 그렇다고 이 방식이 컴퓨터로 계산했을 때 $10^{18}$ 스케일 정도까지는 폴라드 로 알고리즘을 사용한다면 엄청 느리거나 하지 않는다. 하지만 우리는 $N$을 이렇게도 나타낼 수도 있다. $N = p_{1}^{q_{1}} p_{2}^{q_{2}} \cdots p_{n}^{q_{n}} $ (단, $p_..
- Total
- Today
- Yesterday
- 시뮬레이션
- 너비 우선 탐색
- math
- 그리디
- set
- 백트래킹
- 위상 정렬
- 브루트포스
- Implementation
- Simulation
- 정렬
- convex hull
- MST
- 집합과 맵
- greedy
- 최소 신장 트리
- TEXT
- 파이썬
- Sorting
- BFS
- DP
- Topological Sorting
- backtracking
- 수학
- 볼록 껍질
- Brute Force
- 구현
- 다이나믹 프로그래밍
- BOJ
- Python
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |